Studying the mechanical behavior of heat storage media is vital in the safety and design of most sensible and borehole thermal energy storage systems, which are normally built as part of the sub-structure of buildings with load bearing capabilities. In spite of its importance on the efficiency and performance of heat energy storage systems, the mechanical stability and behavior of heat storage materials, mainly at elevated temperatures, has not been given adequate attention in past studies. On this regard, the mechanical behavior of three unsaturated fine- and medium- grained soils from Germany is studied at elevated temperatures, in view of using the soils as a solid sensible heat storage media. The results show a significant dependence of the mechanical behavior of the investigated soils on moisture content and temperature. Furthermore, an increase in shrinkage of the soil specimens with a decrease in the texture of the soils was observed during heating of the soils. The shrinkage behavior is also corroborated with the formation of minor and moderate tensile desiccation cracks of the specimens, which when unaccounted for can result in the lowering of the heat conduction of the heat storage medium, thus lowering the efficiency of the heat storage system.