The aim of this study was to investigate the effect of surface chemistry of the activated carbons on the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D). The 2,4-D was adsorbed on non-modified Norit R3-ex activated carbon (AC-NM) as well as on activated carbons modified by oxidation with concentrated nitric acid (AC-HNO3) and by heat treatment in ammonia at 900°C (AC-NH3). Adsorption isotherms of the 2,4-D on the activated carbons were analyzed using the Freundlich, Langmuir and Langmuir-Freundlich models. The Langmuir equation was slightly better fitted to the experimental data with the correlation coefficients better than 0.99. The values of the Langmuir maximum adsorption capacity (qm) were 2.945, 2.740 and 3.297 mmol/g for the AC-NM, AC-HNO3 and AC-NH3 activated carbons, respectively. The adsorption capacity of the activated carbons increased in the order: AC-HNO3 < AC-NM < AC-NH3. The best adsorbent was activated carbon with basic properties, while the worst adsorption properties were observed for the activated carbon with acidic properties. The acid treatment of activated carbon produced a large number of oxygen-containing functional groups on the carbon surface as it increases its acidic property and, in consequence, reduces the adsorption of the 2,4-D. The treatment of activated carbon with ammonia at high temperature leads to the formation of nitrogen-containing groups. The basic properties of the carbon surface enhance the interaction between activated carbon and acid molecules (dipole-dipole, H-bonding, covalent bonding) causing the increased adsorption of the 2,4-D from water. The effect of pH on the adsorption of 2,4-D onto activated carbons was also studied. The adsorption of the 2,4-D was almost constant at the pH range of 2.0-2.6 and decreased with the further increasing in the pH. The solution pH determines the adsorbent charge and the protonation or dissociation of the adsorbate. The pKa of 2,4-D is 2.8, and at a pH greater than the pKa value, the herbicide existed predominantly in anionic forms. As the pH increased, the degree of dissociation of 2,4-D increased, thereby making it more negatively charged. The values of the point of zero charge (pHPZC) were 6.10, 3.35 and 7.85 for the AC-NM, AC-HNO3 and AC-NH3 activated carbons, respectively. At pH of less than the pHPZC, the surface of the carbon had a net positive charge; at a pH greater than pHPZC, the surface had a net negative charge. The large reduction in the 2,4-dichlorophenoxyacetic acid adsorption at highly basic conditions can be attributed to the electrostatic repulsion between the negatively charged activated carbons and the dissociated 2,4-D molecules. The experimental results demonstrate that the surface chemistry of the activated carbons affects significantly the adsorption of the 2,4-D and should be taken into account when choosing an adsorbent for the removal of the herbicide from water.