The pharmacological induction of apoptosis in neoplastic B cells presents a promising therapeutic avenue for the treatment of chronic lymphocytic leukemia (CLL). We profiled a panel of clinical multi-kinase inhibitors for their ability to induce apoptosis in primary CLL cells. Whereas inhibitors targeting a large number of receptor and intracellular tyrosine kinases including c-KIT, FLT3, BTK and SYK were comparatively inactive, the CDK inhibitors BMS-387032 and flavopiridol showed marked efficacy similar to staurosporine. Using the kinobeads proteomics method, kinase expression profiles and binding profiles of the inhibitors to target protein complexes were quantitatively monitored in CLL cells. The targets most potently affected were CDK9, cyclin T1, AFF3/4 and MLLT1, which may represent four subunits of a deregulated positive transcriptional elongation factor (p-TEFb) complex. Albeit with lower potency, both drugs also bound the basal transcription factor BTF2/TFIIH containing CDK7. Staurosporine and geldanamycin do not affect these targets and thus seem to exhibit a different mechanism of action. The data support a critical role of p-TEFb inhibitors in CLL that supports their future clinical development.