To develop a novel pi-conjugated molecule-based supramolecular assembly, we designed and synthesized trisdehydrotribenzo[12]annulene ([12]DBA) derivative 2 with three carboxyl groups at the periphery. Recrystallization of 2 from DMSO gave a crystal of the solvate 23 DMSO. Crystallographic analysis revealed, to our surprise, that a face-to-face pi-stacked one-dimensional (1D) assembly of 2 was achieved and that the DMSO molecule played a significant role as a "structure-dominant element" in the crystal. This is the first example of [12]DBA to stack completely orthogonal to the columnar axis. To reveal its superstructure-dependent optical and electrical properties, 2 and its parent molecule 1, which crystallizes in a herringbone fashion, were subjected to fluorescence spectroscopic analysis and charge-carrier mobility measurements in crystalline states. The 1D stacked structure of 2 provides a red-shifted, broadened, weakened fluorescence profile (lambda(max) = 545 nm, phi(F) = 0.01), compared to 1 (lambda(max) = 491 nm, phi(F) = 0.12), due to strong interactions between the p orbitals of the stacked molecules. The charge-carrier mobility of the single crystal of 23 DMSO, as well as 1, was determined by flash photolysis time-resolved microwave conductivity (FP-TRMC) measurements. The single crystal of 23 DMSO revealed significantly-anisotropic charge mobility (sigma(mu) = 1.5x10(-1) cm(2) V(-1) s(-1)) along the columnar axis (crystallographic c axis). This value is 12 times larger than that along the orthogonal axis (the a axis).