In the last couple of years there has been much methodological and computational progress in the modelling of optical properties from first principles. Reflectance anisotropy spectra (RAS) can now be calculated with true predictive power and can thus be used to draw conclusions directly on the surface geometry. In the present work we study two potentially very interesting applications for RAS: the oxidation of Si(001) and the functionalization of the Si surface with organic molecules. Our calculations confirm experimental indications that the polarity of the interface-induced optical anisotropy is reversed layer by layer with increasing oxide thickness. The oscillation of the RAS amplitude should thus allow for the quantitative monitoring of the vertical progression of the oxidation. Our results for Si(001) surfaces modified by cyclopentene and 9,10-phenanthrenequinone adsorption show a strong sensitivity of the RAS signal with respect to the adsorption geometry. Comparison with experimental data shows that cyclopentene most probably adsorbs via a cycloaddition reaction with the Si surface dimers, while phenanthrenequinone seems to adsorb across two Si dimers. 1. Modelling of reflectance anisotropy Optical spectroscopies are extremely valuable for in situ, non-destructive and real-time surface monitoring under challenging conditions as may be encountered, e.g., during epitaxial