The amido metal chemistry of the rare earth elements is a rapid developing area in coordination chemistry. Especially bulky mono and bidentate amido and amidinates have been introduced as ligands in rare earth chemistry. Due to these sterically demanding ligands, the coordination numbers of the rare earth elements are significantly reduced. This article focuses on two of these bulky ligand systems: bis(trimethylsilyl)amide and aminotroponiminates.
The homoleptic bis(trimethylsilyl)amides of rare earth elements, [Ln{N(SiMe3)2}3], are well established compounds in synthetic chemistry. Therefore, this article reviews recent progress in the catalytic application of these compounds. In the second part of this research report, it is shown that N, N′‐disubstituted aminotroponiminates and mono bridged bisaminotroponiminates can be used as cyclopentadienyl alternatives. Achiral and chiral aminotroponiminates have been used. The structural properties, reactivities as well as the catalytic and synthetic applications of the aminotroponiminates complexes will be outlined in this article.