Contents 1. Introduction . 2. Development of the dielectric tensor for a free-carrier magnetoplasma 2.1. Electrodynamic preliminaries . 2.2. The conductivity tensor. . 2.3. Choice of coordinates . 3.1. Wave propagation at an arbitrary angle to Bo 3.2. The Faraday configuration . 3.3. The Voigt configuration..3.4. Polarization for arbitrary 0 in other coordinate systems 4.1. Wave propagation in an unbounded medium 4.2. The infinite half-space . 4.3. The plane-parallel slab . 4.4. Mode interference phenomena: the Faraday and Voigt effects 4.5. Small samples and semiconductor powders 3. The dispersion equation E. D. Palik and J . K. Furdyna 10. Nonlocal effects . 10.1. General considerations . 10.2. Consequences of spatial dispersion: a qualitative view 10.3. Faraday geometry: a quantitative discussion . 10.4. The Voigt geometry: a quantitative discussion . 11 .l. Transverse magnetoconductivity in extrinsic narrow gap 11.2. Effect of orbital quantization on AlfvCn waves . 11.3, Miscellaneous comments Appendix Al. Interpretation of charge motion in a magnetoplasma . . A1 .l. Displacement coordinates in the Faraday geometry . A1.2. The plasmon and cyclotron oscillators Al.3. Coupled modes upon leaving the Faraday geometry . Al.4. Displacement coordinates in the Voigt geometry . Al.5. Magnetoplasmons with arbitrary direction of propagation . Al.6. Interpretation of zeroes in K ~, ~ A1.7. A point of view A2.1. The wave vector and the dielectric constant . A2.2. Energy density of radiation in a dispersive medium . A2.3. Phase velocity . A3. Kramers-Kronig analysis . A3.1. Dispersion relations for Bo = 0 A3.2. Dispersion relations for Bo#O A4. Magneto-optics of birefringent crystals .A4.1. The Bo = 0 case . A4.2. T h e BOZO case . AS.l. T h e Bo = 0 case .