Flax and hemp fibres were treated by various combinations of water/diluted alkaline solution and stirring/ultrasound, respectively. Changes in the microstructure (scanning electron microscopy) and porous structure (low-temperature nitrogen adsorption), removal of non-cellulosic materials (weight loss, FTIR), mean fibre diameter, and adhesion of the polypropylene matrix to the fibres (micro-bond test) were investigated. For both types of fibres, removal of (FTIR) was observed. The fibre diameter of hemp was decreased by several treatments, most of all by stirring in alkali and subsequent sonication in water, while the ultrasound applied in alkali solution did not change the fibre fineness. This can be attributed to the dual effect of ultra-sonication: the swelling effect of alkali combined with ultrasound energy probably served the sticking of inter-fibrillar material rather than their dissolution. Fibre diameter of flax did not change in any circumstances. The porosity of hemp in the mesopore range increased, while that of flax decreased by alkali treatment and subsequent sonication. The reason for this difference might be the dissimilar cell wall structures of the two bast fibres, the high arabinose content of the hemp, and/or the cottonisation of hemp. No treatments altered the fibre-matrix adhesion measured by pulling out the fibre from a micro-droplet of polypropylene.