The porphyrias are a group of metabolic diseases caused by inherited or acquired enzymatic deficiency in the metabolic pathway of heme biosynthesis. Simplistically, they can be considered as storage diseases, because the partial enzymatic defect gives rise to a metabolic "bottleneck" in the biosynthetic pathway and hence to an accumulation of different metabolic intermediates, potentially toxic and responsible for the various (cutaneous or neurovisceral) clinical manifestations observed in these diseases. In the acute porphyrias (acute intermittent porphyria, hereditary coproporphyria, variegate porphyria, and the very rare delta-aminolevulinic acid dehydratase ALAD-d porphyria), the characteristic severe neurovisceral involvement is mainly ascribed to a tissue accumulation of delta-aminolevulinic acid, a neurotoxic nonporphyrin precursor. Many different factors, both endogenous and exogenous, may favor the accumulation of this precursor in patients who are carriers of an enzymatic defect consistent with an acute porphyria, thus contributing to trigger the serious (and potentially fatal) clinical manifestations of the disease (acute porphyric attacks). To date, many different drugs are known to be able to precipitate an acute porphyric attack, so that the acute porphyrias are also considered as pharmacogenetic or toxygenetic diseases. This article reviews the different biochemical mechanisms underlying the capacity of many drugs to precipitate a porphyric acute attack (drug porphyrogenicity) in carriers of genetic mutations responsible for acute porphyrias, and addresses the issue of prescribing drugs for patients affected by these rare, but extremely complex, diseases.