2022
DOI: 10.3390/insects13050414
|View full text |Cite
|
Sign up to set email alerts
|

Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary

Abstract: In the present study, we observed a 58% decrease in the fecundity of Drosophila melanogaster, after treatment with the cyromazine. To further elucidate the effects of cyromazine on reproduction, we counted the number of both germline stem cells (GSCs) and cystoblasts (CBs) in the ovary of a 3-day-old adult female. The results showed a significant decrease in the number of GSCs and CBs as compared to the control group. The mode of action of cyromazine is believed to be through the ecdysone signaling pathway. To… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 49 publications
0
3
0
Order By: Relevance
“…Other studies point to relevant aspects of the toxicity mechanism, reinforcing the relevance of this alternative model for the biological sciences and health. Rotenone mediated developmental toxicity in Drosophila melanogaster [88] 2022 Characterization of a novel pesticide transporter and P-glycoprotein orthologues in Drosophila melanogaster [89] 2022 Age-related tolerance to paraquat-induced parkinsonism in Drosophila melanogaster [90] 2022 Potentiation of paraquat toxicity by inhibition of the antioxidant defenses and protective effect of the natural antioxidant, 4-hydroxyisopthalic acid in Drosophila melanogaster [91] 2022 Herbicide Roundup shows toxic effects in nontarget organism Drosophila [92] 2022 Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster [93] 2022 Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary [94] 2022 Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies [95] 2022 Short exposure to nitenpyram pesticide induces effects on reproduction, development and metabolic gene expression profiles in Drosophila melanogaster (Diptera: Drosophilidae) [96] 2022 Using tissue specific P450 expression in Drosophila melanogaster larvae to understand the spatial distribution of pesticide metabolism in feeding assays [97] 2021 An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila [98] 2021 Effects of some insecticides (deltamethrin and malathion) and lemongrass oil on fruit fly (Drosophila melanogaster) [99] 2021 Chronic exposure to paraquat induces alpha-synuclein pathogenic modifications in Drosophila [100] 2021 Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults [101] 2021 Transcriptomic identification and characterization of genes commonly responding to sublethal concentrations of six different insecticides in the common fruit fly, Drosophila melanogaster [102] 2021 Protective effect of Catharanthus roseus plant extracts against endosulfan and its isomers induced impacts on non-targeted insect model, Drosophila melanogaster and live brain cell imaging [103] 2021 Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster [104] 2021 Dietary behavior of Drosophila melanogaster fed with genetically-modified corn or Roundup ® [105] Brazilian Archives of Biology and Technology. Vol.67: e24230091, 2024 www.scielo.br/babt Cont.…”
Section: The Alternative Animal Model Drosophila Melanogaster As a Bi...mentioning
confidence: 99%
“…Other studies point to relevant aspects of the toxicity mechanism, reinforcing the relevance of this alternative model for the biological sciences and health. Rotenone mediated developmental toxicity in Drosophila melanogaster [88] 2022 Characterization of a novel pesticide transporter and P-glycoprotein orthologues in Drosophila melanogaster [89] 2022 Age-related tolerance to paraquat-induced parkinsonism in Drosophila melanogaster [90] 2022 Potentiation of paraquat toxicity by inhibition of the antioxidant defenses and protective effect of the natural antioxidant, 4-hydroxyisopthalic acid in Drosophila melanogaster [91] 2022 Herbicide Roundup shows toxic effects in nontarget organism Drosophila [92] 2022 Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster [93] 2022 Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary [94] 2022 Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies [95] 2022 Short exposure to nitenpyram pesticide induces effects on reproduction, development and metabolic gene expression profiles in Drosophila melanogaster (Diptera: Drosophilidae) [96] 2022 Using tissue specific P450 expression in Drosophila melanogaster larvae to understand the spatial distribution of pesticide metabolism in feeding assays [97] 2021 An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila [98] 2021 Effects of some insecticides (deltamethrin and malathion) and lemongrass oil on fruit fly (Drosophila melanogaster) [99] 2021 Chronic exposure to paraquat induces alpha-synuclein pathogenic modifications in Drosophila [100] 2021 Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults [101] 2021 Transcriptomic identification and characterization of genes commonly responding to sublethal concentrations of six different insecticides in the common fruit fly, Drosophila melanogaster [102] 2021 Protective effect of Catharanthus roseus plant extracts against endosulfan and its isomers induced impacts on non-targeted insect model, Drosophila melanogaster and live brain cell imaging [103] 2021 Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster [104] 2021 Dietary behavior of Drosophila melanogaster fed with genetically-modified corn or Roundup ® [105] Brazilian Archives of Biology and Technology. Vol.67: e24230091, 2024 www.scielo.br/babt Cont.…”
Section: The Alternative Animal Model Drosophila Melanogaster As a Bi...mentioning
confidence: 99%
“…Measurements of Drosophila fecundity are used in a wide variety of studies, including investigations of aging, stem cell biology, nutrition, behavior, and toxicology [1][2][3][4][5][6][7]. These studies build on the wealth of knowledge about Drosophila oogenesis and the complex array of inputs that combine to optimize the rate of egg laying in response to the environment.…”
Section: Introductionmentioning
confidence: 99%
“…Our previous study showed that the continuous selection of D. melanogaster from the larval to the adult stage affected the GSCs and CBs in the adult ovary. Furthermore, we observed that the expression of selected ecdysone signaling-related genes and ecdysone titer significantly decreased in the treated ovaries (Khalid et al, 2022). Therefore, to deeply investigate how this chemical affected the germ cells in the adult ovaries, we first counted the number of PGCs in the larval ovaries.…”
Section: Introductionmentioning
confidence: 99%