Redox interaction of mitochondrial cytochrome c oxidase (COX) with ferrocyanide/ferricyanide couple is greatly accelerated by polycations, such as poly-l-lysine [Musatov et al. (1991) Biological Membranes 8, 229-234]. This has allowed us to study ferrocyanide oxidation by COX at very high redox potentials of the ferrocyanide/ferricyanide couple either following spectrophotometrically ferricyanide accumulation or measuring proton uptake associated with water formation in the reaction. At low [ferrocyanide]/[ferricyanide] ratios (Eh values around 500 mV) and ambient oxygen concentration, the ferrocyanide-oxidase activity of COX becomes negligibly small as compared to the reaction rate observed with pure ferrocyanide. Oxidation of ferrocyanide under these conditions, is greatly stimulated by H2O2 or ethylhydroperoxide indicating peroxidatic reaction involved. The ferrocyanide-peroxidase activity of COX is strictly polylysine-dependent and is inhibited by heme a3 ligands such as KCN and NaN3. Apparently the reaction involves normal electron pathway, i.e. electron donation through CuA and oxidation via heme a3. The peroxidase reaction shows a pH-dependence similar to that of the cytochrome c oxidase activity of COX. When COX is preequilibrated with excess H2O2, addition of ferrocyanide shifts the initial steady-state concentrations of the Ferryl-Oxo and Peroxy compounds towards approximately 2:1 ratio of the two intermediates. It is suggested that in the peroxidase cycleferrocyanide donates electrons to both P and F intermediates with a comparable efficiency. Isolation of a partial redox activity of COX opens a possibility to study separately proton translocation coupled to the peroxidase half-reaction of the COX reaction cycle. Copyright 1998