Background
Inflammation is an important risk factor in atherosclerosis, the underlying cause of coronary artery disease (CAD). Unresolved inflammation may result in maladaptive immune responses and lead to immune reactivity to self-antigens. We hypothesized that inflammation in CAD patients would manifest in immune reactivity to self-antigens detectable in soluble HLA-I/peptide complexes in the plasma.
Methods
Soluble HLA-I/peptide complexes were immuno-precipitated from plasma of male acute coronary syndrome (ACS) patients or age-matched controls and eluted peptides were subjected to mass spectrometry to generate the immunopeptidome. Self-peptides were ranked according to frequency and signal intensity, then mouse homologs of selected peptides were used to test immunologic recall in spleens of male apoE-/- mice fed either normal chow or high fat diet. The peptide detected with highest frequency in patient plasma samples and provoked T cell responses in mouse studies was selected for use as a self-antigen to stimulate CAD patient peripheral blood mononuclear cells (PBMCs).
Results
The immunopeptidome profile identified self-peptides unique to the CAD patients. The mouse homologs tested showed immune responses in apoE-/- mice. Keratin 8 was selected for further study in patient PBMCs which elicited T Effector cell responses in CAD patients compared to controls, associated with reduced PD-1 mRNA expression.
Conclusion
An immunopeptidomic strategy to search for self-antigens potentially involved in CAD identified Keratin 8. Self-reactive immune response to Keratin 8 may be an important factor in the inflammatory response in CAD.