Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background and Aims During an analysis of plant male meiocytes coming from destroyed meiocyte columns – united multicellular structures formed by male meiocytes in each anther locule – a considerable amount of information becomes unavailable. Therefore, in this study, intact meiocyte columns were studied by volume microscopy in wild-type rye for the most relevant presentation of 3D structure of rye meiocytes throughout meiosis. Methods We used two types of volume light microscopy: confocal laser scanning microscopy and non-confocal brightfield scanning microscopy combined with alcohol and aldehyde fixation as well as serial block-face scanning electron microscopy. Key Results Unusual structures called nuclear protuberances were detected. At certain meiotic stages, nuclei formed protuberances that crossed the cell wall through intercellular channels and extended into the cytoplasm of neighbouring cells, while all other aspects of cell structure appeared to be normal. This phenomenon of intercellular nuclear migration (INM) was detected in most meiocytes at leptotene/zygotene. No cases of micronuclei formation or appearance of binucleated meiocytes were noticed. There were instances of direct contact between two nuclei during INM. No influence of fixation or of mechanical impact on the induction of INM was detected. Conclusions INM in rye may be a programmed process (a normal part of rye male meiosis) or a tricky artefact that cannot be avoided in any way no matter which approach to meiocyte imaging is used. In both cases, INM seems to be an obligatory phenomenon that has previously been hidden by limitations of common microscopic techniques and by two-dimensional perception of plant male meiocytes. INM cannot be ignored in any studies involving manipulations of rye anthers.
Background and Aims During an analysis of plant male meiocytes coming from destroyed meiocyte columns – united multicellular structures formed by male meiocytes in each anther locule – a considerable amount of information becomes unavailable. Therefore, in this study, intact meiocyte columns were studied by volume microscopy in wild-type rye for the most relevant presentation of 3D structure of rye meiocytes throughout meiosis. Methods We used two types of volume light microscopy: confocal laser scanning microscopy and non-confocal brightfield scanning microscopy combined with alcohol and aldehyde fixation as well as serial block-face scanning electron microscopy. Key Results Unusual structures called nuclear protuberances were detected. At certain meiotic stages, nuclei formed protuberances that crossed the cell wall through intercellular channels and extended into the cytoplasm of neighbouring cells, while all other aspects of cell structure appeared to be normal. This phenomenon of intercellular nuclear migration (INM) was detected in most meiocytes at leptotene/zygotene. No cases of micronuclei formation or appearance of binucleated meiocytes were noticed. There were instances of direct contact between two nuclei during INM. No influence of fixation or of mechanical impact on the induction of INM was detected. Conclusions INM in rye may be a programmed process (a normal part of rye male meiosis) or a tricky artefact that cannot be avoided in any way no matter which approach to meiocyte imaging is used. In both cases, INM seems to be an obligatory phenomenon that has previously been hidden by limitations of common microscopic techniques and by two-dimensional perception of plant male meiocytes. INM cannot be ignored in any studies involving manipulations of rye anthers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.