Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SRprotein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.
DNA topoisomerase I (topo I)2 is a constitutively expressed multifunctional enzyme that localizes at active transcription sites (1, 2). Its best known function is to control the topological state of DNA by relieving torsional stress that is generated following DNA strand separation during transcription, replication, and repair (3-5). The catalytic mechanism involves the formation of a DNA⅐topo I complex (cleavage complex) with the enzyme being covalently bound to the 3Ј-end of the cleaved DNA strand through a tyrosine-phosphate ester bond. Cleavage complexes are usually short-lived; their stabilization by compounds of the camptothecin (CPT) family of anticancer drugs may cause DNA strand break accumulation and eventually lead to cell death. Human topo I can relax both negative and positive supercoils by controlled rotation of the DNA strand downstream of the cleavage site followed by break resealing and restoration of an intact DNA duplex.In addition to relaxing supercoiled DNA, human topo I also plays a major role in pre-mRNA splicing, being endowed with a protein kinase activity targeted at a group of splicing factors of the serine-arginine (SR)-rich protein family (6). SR-proteins function both as components of the basal RNA splicing machinery and as regulators of alternative splicing (7, 8). Moreover, SR-proteins are involved in the control of mRNA transport and stability (8, 9) and contribute to the maintenance of genomic stability (10). SR-proteins are structurally characterized ...