A cell’s global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume is the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the Fluorescence eXclusion method (FXm) and Quantitative Phase Microscopy (QPM), we investigate CMD dynamics after exposure to sudden media osmolarity change. We find that while the cell volume and mass exhibit complex behavior after osmotic shock, CMD follows a straightforward monotonic recovery in 48 hours. The recovery is cell-cycle independent and relies on a coordinated adjustment of protein synthesis and volume growth rates. Surprisingly, we find that the protein synthesis rate decreases when CMD increases. This result is explained by CMD-dependent nucleoplasm-cytoplasm transport, which serves as negative regulatory feedback on CMD. The Na+/H+exchanger NHE plays a role in regulating CMD by affecting both protein synthesis and volume change. Taken together, we reveal that cells possess a robust control system that actively regulates CMD during environmental change.