Cell viability and cytotoxicity assays play a crucial role in drug screening and evaluating the cytotoxic effects of various chemicals. The quantification of cell viability and proliferation serves as the cornerstone for numerous in vitro assays that assess cellular responses to external factors. In the last decade, several studies have developed guidelines for defining and interpreting cell viability and cytotoxicity based on morphological, biochemical, and functional perspectives. As this domain continues to experience ongoing growth, revealing new mechanisms orchestrating diverse cell cytotoxicity pathways, we suggest a revised classification for multiple assays employed in evaluating cell viability and cell death. This classification is rooted in the cellular compartment and/or biochemical element involved, with a specific focus on mechanistic and essential aspects of the process. The assays are founded on diverse cell functions, encompassing metabolic activity, enzyme activity, cell membrane permeability and integrity, adenosine 5′‐triphosphate content, cell adherence, reduction equivalents, dye inclusion or exclusion, constitutive protease activity, colony formation, DNA fragmentation and nuclear splitting. These assays present straightforward, reliable, sensitive, reproducible, cost‐effective, and high‐throughput approaches for appraising the effects of newly formulated chemotherapeutic biomolecules on the cell survival during the drug development process.