To investigate the chemical structure-cytotoxicity relationship of methacrylate-based resin monomers, we studied their effects on anti-oxidant responsive element (ARE)-mediated transcription. HepG2 cells stably expressing an ARE-regulated luciferase reporter gene were cultured for 6 h with various concentrations of several resin monomers and subjected to a luciferase assay. The doseresponse curves observed for hydrophobic monomers with different hydrocarbon chains (MMA, EMA, PMA and BMA) began to rise at concentrations between 0.5 and 1 mM; the curves rose as the monomer concentrations increased up to 5 (BMA), 10 (PMA), or 30 mM (MMA and EMA). In contrast, hydrophilic monomers having a hydroxyl group (HEMA and HPMA) showed bell-shaped curves, and stimulated the reporter expression more strongly than the hydrophobic monomers in a low concentration range (0.5-5 mM). The results suggest that introduction of a hydroxyl group in a methacrylate-based resin monomer increases its intracellular electrophilic reactivity and cytotoxicity.