The Chinese sturgeon (Acipenser sinensis), a critically endangered migratory fish native to the Yangtze River estuary, is experiencing alarming population declines. Understanding the physiological and biochemical profiles of this species is paramount for its conservation. However, due to limited sample availability, blood biochemical parameters have remained understudied. In this study, we examined blood chemistry in artificially cultured Chinese sturgeon ranging from 2 to 15 years of age. Our results revealed age-related trends: total protein (TP), albumin (ALB), globulin (GLO), total cholesterol (CHOL), high-density lipoprotein (HDL), low-density lipoprotein (LDL), estrogen (E2), testosterone (T), testosterone undecanoate (11-KT), and red blood cell count (RBC) increased with age, while glucose (GLU), uric acid (UA), and serum creatinine (CREA) decreased. Levels of C-reactive protein (CRP) declined from 3 to 7 years but rose from 8 to 15 years. Blood parameters showed stabilization with age, indicating enhanced resilience and immunity. Significant alterations in parameters at ages 2–3 and 14–15 suggest critical developmental stages. These findings are crucial for understanding sturgeon growth, development, migration, and reproduction, underscoring the necessity for targeted conservation efforts during pivotal life stages.