Ten cell lines established from juvenile green sea turtles were tested and evaluated for their cytotoxic responses to four heavy metals: cadmium (Cd), chromium (Cr), zinc (Zn), and copper (Cu). Following a 24-h exposure to these metal salts at selected concentrations, test cells were comparatively characterized by morphology, viability, and proliferation. Experimental results indicated that all these metal salts were cytotoxic to these turtle cell lines at varied concentrations. Calculated 10% and 50% inhibitory concentration (IC(10) and IC(50)) values revealed that the cytotoxicities of Cd and Cr were significantly more potent than the other two metal salts (p < 0.01). Comparative analysis of IC(10) values in these ten cell lines showed that turtle lung cells (GT-LG) are the most sensitive cell line to Cd, Cr, Zn, and Cu. Among these turtle cell lines, turtle liver cells (GT-LV) are more tolerant than other cells to Cd, Cr, and Zn, while GT-EYE cells are more tolerant to Cu, as determined by IC(50) values. Overall, GT-LG represents the most sensitive cells to heavy metal contamination and may be used for initial environmental monitoring, while the highly tolerant nature of GT-LV and GT-EYE cells to the tested heavy metals suggest their potential use as an emergency last-resort indicator of potential metal-related adverse effect on human health.