Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cloudberry (Rubus chamaemorus L.) and arctic raspberry (Rubus arcticus L.) are highly nutritional and medicinal but lowyield berries, with some populations being on the verge of extinction. Micropropagation biotechnologies are cost-effective and may provide healthy and plentiful planting material for these valuable berries. Clonal micropropagation of cloudberry and arctic raspberry requires new methods adapted for Russian varieties. This research featured the effect of sterilizing agents on the survival rate of explants of R. chamaemorus and R. arcticus, as well as the effect of growth regulators in the nutrient medium on their organogenesis in vitro. Berries obtained from regenerant plants of R. chamaemorus (Arkhangelsk and Vologda varieties) and R. arcticus (Sofia and Galina varieties) underwent a biochemical analysis. Further research involved the effect of sterilizing agents and exposure time on the viability of explants, as well as the effect of the nutrient medium composition and the concentration of growth regulators on the development of microshoots and roots in vitro. In case of lateral buds, the highest survival rate of both types of explants (80–96%) belonged to the samples sterilized with 0.2% silver nitrate and 5% Lysoformin 3000 for 15 min. In case of etiolated shoots (79–100%), it was the samples treated with 0.2% silver nitrate, 0.01% Nika 2, and 5% Lysoformin 3000 for 10 min. The maximal total length of microshoots in R. chamaemorus (19.4–22.7 cm) was registered at 0.1 mg/L Cytodef in the Murashige and Skoog medium. The maximal total length of roots (46.0–56.6 cm) was obtained when the medium contained 0.5 mL/L indolylacetic acid. As for R. arcticus, the maximal total lengths of microshoots (22.4–22.8 cm) and roots (86.6–89.3 cm) occurred at the same concentrations of growth regulators on 1/2 Murashige and Skoog medium. In this research, Cytodef and indolylacetic acid applied in the process of clonal micropropagation of R. chamaemorus and R. arcticus made it possible to increase the yield of high-quality planting material for commercial plantations.
Cloudberry (Rubus chamaemorus L.) and arctic raspberry (Rubus arcticus L.) are highly nutritional and medicinal but lowyield berries, with some populations being on the verge of extinction. Micropropagation biotechnologies are cost-effective and may provide healthy and plentiful planting material for these valuable berries. Clonal micropropagation of cloudberry and arctic raspberry requires new methods adapted for Russian varieties. This research featured the effect of sterilizing agents on the survival rate of explants of R. chamaemorus and R. arcticus, as well as the effect of growth regulators in the nutrient medium on their organogenesis in vitro. Berries obtained from regenerant plants of R. chamaemorus (Arkhangelsk and Vologda varieties) and R. arcticus (Sofia and Galina varieties) underwent a biochemical analysis. Further research involved the effect of sterilizing agents and exposure time on the viability of explants, as well as the effect of the nutrient medium composition and the concentration of growth regulators on the development of microshoots and roots in vitro. In case of lateral buds, the highest survival rate of both types of explants (80–96%) belonged to the samples sterilized with 0.2% silver nitrate and 5% Lysoformin 3000 for 15 min. In case of etiolated shoots (79–100%), it was the samples treated with 0.2% silver nitrate, 0.01% Nika 2, and 5% Lysoformin 3000 for 10 min. The maximal total length of microshoots in R. chamaemorus (19.4–22.7 cm) was registered at 0.1 mg/L Cytodef in the Murashige and Skoog medium. The maximal total length of roots (46.0–56.6 cm) was obtained when the medium contained 0.5 mL/L indolylacetic acid. As for R. arcticus, the maximal total lengths of microshoots (22.4–22.8 cm) and roots (86.6–89.3 cm) occurred at the same concentrations of growth regulators on 1/2 Murashige and Skoog medium. In this research, Cytodef and indolylacetic acid applied in the process of clonal micropropagation of R. chamaemorus and R. arcticus made it possible to increase the yield of high-quality planting material for commercial plantations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.