D-BADGE: Decision-Based Adversarial Batch Attack With Directional Gradient Estimation
Geunhyeok Yu,
Minwoo Jeon,
Hyoseok Hwang
Abstract:The susceptibility of deep neural networks (DNNs) to adversarial examples has prompted an increase in the deployment of adversarial attacks. Image-agnostic universal adversarial perturbations (UAPs) are much more threatening, but many limitations exist to implementing UAPs in real-world scenarios where only binary decisions are returned. In this research, we propose D-BADGE, a novel method to craft universal adversarial perturbations for executing decision-To primarily optimize perturbation by focusing on deci… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.