Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We consider inflationary models with multiple spectator axions coupled to dark gauge sectors via Chern-Simons (CS) terms. The energy injection into Abelian gauge fields from the axions engenders a multi-peak profile for scalar and tensor spectra. We highlight the constraining power of CMB spectral distortions on the scalar signal and discuss the conditions under which spectator sectors can account for the recently observed stochastic gravitational wave (GW) background in the nHz range. Given the tantalizing prospect of a multi-peak “GW forest” spanning several decades in frequency, we elaborate on possible ultraviolet origins of the spectator models from Type IIB orientifolds. String compactifications generically produce a multitude of axions, the “Axiverse”, from dimensional reduction of p-form gauge fields. The CS coupling of such axions to dark gauge fields in the worldvolume theory of D7-branes can be tuned via multiple brane wrappings and/or quantized gauge field strengths. If string axions coupled to Abelian gauge fields undergo slow-roll during inflation, they produce GW signals with peaked frequency distribution whose magnitude depends on the details of the compactification. We discuss the restrictions on spectator models from consistency and control requirements of the string compactification and thereby motivate models that may live in the string landscape as opposed to the swampland.
We consider inflationary models with multiple spectator axions coupled to dark gauge sectors via Chern-Simons (CS) terms. The energy injection into Abelian gauge fields from the axions engenders a multi-peak profile for scalar and tensor spectra. We highlight the constraining power of CMB spectral distortions on the scalar signal and discuss the conditions under which spectator sectors can account for the recently observed stochastic gravitational wave (GW) background in the nHz range. Given the tantalizing prospect of a multi-peak “GW forest” spanning several decades in frequency, we elaborate on possible ultraviolet origins of the spectator models from Type IIB orientifolds. String compactifications generically produce a multitude of axions, the “Axiverse”, from dimensional reduction of p-form gauge fields. The CS coupling of such axions to dark gauge fields in the worldvolume theory of D7-branes can be tuned via multiple brane wrappings and/or quantized gauge field strengths. If string axions coupled to Abelian gauge fields undergo slow-roll during inflation, they produce GW signals with peaked frequency distribution whose magnitude depends on the details of the compactification. We discuss the restrictions on spectator models from consistency and control requirements of the string compactification and thereby motivate models that may live in the string landscape as opposed to the swampland.
We study limits of vanishing Yukawa couplings of 4d chiral matter fields in Quantum Gravity, using as a laboratory type IIA orientifolds with D6-branes. In these theories chiral fermions arise at brane intersections, where an infinite tower of charged particles dubbed gonions are localised. We show that in the limit Y → 0 some of these towers become asymptotically massless, while at the same time the kinetic term of some chiral fields becomes singular and at least two extra dimensions decompactify. For limits parametrised by a large complex structure saxion u, Yukawa couplings have a behaviour of the form Y ~ 1/ur, with r some positive rational number. Moreover, in this limit some of the gauge couplings associated to the Yukawa vanish. The lightest gonion scales are of order mgon ~ gsMP with s > 1, verifying the magnetic WGC with room to spare and with no need of its tower/sublattice versions. We also show how this behaviour can be understood in the context of the emergence of kinetic terms in Quantum Gravity. All these results may be very relevant for phenomenology, given the fact that some of the Yukawa couplings in the Standard Model are very small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.