2024
DOI: 10.3390/w16162216
|View full text |Cite
|
Sign up to set email alerts
|

Daily Runoff Prediction Based on FA-LSTM Model

Qihui Chai,
Shuting Zhang,
Qingqing Tian
et al.

Abstract: Accurate and reliable short-term runoff prediction plays a pivotal role in water resource management, agriculture, and flood control, enabling decision-makers to implement timely and effective measures to enhance water use efficiency and minimize losses. To further enhance the accuracy of runoff prediction, this study proposes a FA-LSTM model that integrates the Firefly algorithm (FA) with the long short-term memory neural network (LSTM). The research focuses on historical daily runoff data from the Dahuangjia… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 47 publications
0
0
0
Order By: Relevance