Dam break inundation mapping is essential for risk management and mitigation, emergency action planning, and potential consequences assessment. To quantify flood hazard associated with dam failures, flooding variables must be predicted by efficient and robust numerical models capable to effectively cope with the computational difficulties posed by complex flows on real topographies. Validation against real-field data of historical dam-breaks is extremely useful to verify models’ capabilities and accuracy. However, such catastrophic events are rather infrequent, and available data on the breaching mechanism and downstream flooding are usually inaccurate and incomplete. Nevertheless, in some cases, real-field data collected after the event (mainly breach size, maximum water depths and flood wave arrival times at selected locations, water marks, and extent of flooded areas) are adequate to set up valuable and significant test cases, provided that all other data required to perform numerical simulations are available (mainly topographic data of the floodable area and input parameters defining the dam-break scenario). This paper provides a review of the historical dam-break events for which real-field datasets useful for validation purposes can be retrieved in the literature. The resulting real-field test cases are divided into well-documented test cases, for which extensive and complete data are already available, and cases with partial or inaccurate datasets. Type and quality of the available data are specified for each case. Finally, validation data provided by dam-break studies on physical models reproducing real topographies are presented and discussed. This review aims at helping dam-break modelers: (a) to select the most suitable real-field test cases for validating their numerical models, (b) to facilitate data access by indicating relevant bibliographic references, and (c) to identify test cases of potential interest worthy of further research.