The mechanical properties of ex-situ and in-situ metallic glass matrix composites (MGMCs) have proven to be both scientifically unique and of potentially important for practical applications. However, the underlying deformation mechanisms remain to be studied. In this article, we review the development, fabrication, microstructures, and properties of MGMCs, including the room-temperature, cryogenic-temperature, and high-temperature mechanical properties upon quasi-static and dynamic loadings. In parallel, the deformation mechanisms are experimentally and theoretically explored. Moreover, the fatigue, corrosion, and wear behaviors of MGMCs are discussed. Finally, the potential applications and important unresolved issues are identified and discussed.