Additive manufacturing (AM) or 3D printing has become a popular manufacturing technique that helps to save materials during production. Modern industries have started incorporating printed structural parts into their structures, including those with critical applications, like in aerospace and civil. Similarly for structures made from metals or fibre reinforced polymers there is a need for structural health monitoring of the 3D-printed structural parts. This requires the development of accurate and reliable methods for evaluating and monitoring the structural integrity of such components. The electromechanical impedance (EMI) method is frequently used to evaluate the health condition of lightweight structures based on the local structural response in the high-frequency range. This study investigates the usage of EMI that is based both on surface bonded and embedded sensors. As sensors, the piezoelectric discs were used for the measurements. The measurements were made in the 1 kHz to 100 kHz frequency range for the resistance (R) data. During the study, the simulated damage was introduced and the sensors' responses were compared to determine the influence of embedding on the damage detection performance.