2022
DOI: 10.3390/met12071096
|View full text |Cite
|
Sign up to set email alerts
|

Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Components

Abstract: This study presents a microstructural model applicable to additively manufactured (AM) austenitic SS 316L components fabricated via a direct energy deposition (DED) process. The model is primarily intended to give an understanding of the effect of microscale and mesoscale features, such as grains and melt pool sizes, on the mechanical properties of manufactured components. Based on experimental observations, initial assumptions for the numerical model regarding grain size and melt pool dimensions were consider… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?