This review addresses recent developments in nonequilibrium statistical physics. Focusing on phase transitions from fluctuating phases into absorbing states, the universality class of directed percolation is investigated in detail. The survey gives a general introduction to various lattice models of directed percolation and studies their scaling properties, fieldtheoretic aspects, numerical techniques, as well as possible experimental realizations. In addition, several examples of absorbing-state transitions which do not belong to the directed percolation universality class will be discussed. As a closely related technique, we investigate the concept of damage spreading. It is shown that this technique is ambiguous to some extent, making it impossible to define chaotic and regular phases in stochastic nonequilibrium systems. Finally, we discuss various classes of depinning transitions in models for interface growth which are related to phase transitions into absorbing states.