Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 2023
DOI: 10.18653/v1/2023.acl-long.92
|View full text |Cite
|
Sign up to set email alerts
|

DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation

Abstract: Self-training emerges as an important research line on domain adaptation. By taking the model's prediction as the pseudo labels of the unlabeled data, self-training bootstraps the model with pseudo instances in the target domain. However, the prediction errors of pseudo labels (label noise) challenge the performance of self-training. To address this problem, previous approaches only use reliable pseudo instances, i.e., pseudo instances with high prediction confidence, to retrain the model. Although these strat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 25 publications
0
0
0
Order By: Relevance