Immunotherapy is the latest innovation for the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) entered the clinical practice and are under evaluation in clinical trials. MAbs can target highly selective and specific antigens on the cell surface of MM cells causing cell death (CD38 and CS1), convey specific cytotoxic drugs (antibody-drug conjugates), remove the breaks of the immune system (programmed death 1 (PD-1) and PD-ligand 1/2 (L1/L2) axis), or boost it against myeloma cells (bi-specific mAbs and T cell engagers). Two mAbs have been approved for the treatment of MM: the anti-CD38 daratumumab for newly-diagnosed and relapsed/refractory patients and the anti-CS1 elotuzumab in the relapse setting. These compounds are under investigation in clinical trials to explore their synergy with other anti-MM regimens, both in the front-line and relapse settings. Other antibodies targeting various antigens are under evaluation. B cell maturation antigens (BCMAs), selectively expressed on plasma cells, emerged as a promising target and several compounds targeting it have been developed. Encouraging results have been reported with antibody drug conjugates (e.g., GSK2857916) and bispecific T cell engagers (BiTEs ® ), including AMG420, which re-directs T cell-mediated cytotoxicity against MM cells. Here, we present an overview on mAbs currently approved for the treatment of MM and promising compounds under investigation.Cancers 2020, 12, 15 2 of 24 Cancers 2020, 12, 15 3 of 24 (Bregs, which promote tumor growth and immune escape), as well as a subset of regulatory T cells (Tregs) express CD38, and their levels are reduced after daratumumab exposure. Conversely, daratumumab results in significant expansion of CD8+ cytotoxic and CD4+ helper T cells, likely following the depletion of regulatory cells. Remarkably, expanded effector T cells also show increased killing capacity due to augmented levels of granzyme B, which activates caspases and triggers cell apoptosis [23][24][25]. In addition, among the activities promoted by CD38, there is a nicotinamide adenine dinucleotide (NAD)-ase activity, which results in reduced levels of NAD+ in T cells, responsible for the loss of their effector functions (exhausted T cells). In murine models, anti-CD38 mAbs administration induced higher levels of NAD+ in T effector cells, thus enhancing their antitumor activity [23]. The main mechanisms of action of anti-CD38 monoclonal antibodies are summarized in Figure 1.