2017
DOI: 10.3842/sigma.2017.036
|View full text |Cite
|
Sign up to set email alerts
|

Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation

Abstract: Abstract. The paper presents two results. First it is shown how the discrete potential modified KdV equation and its Lax pairs in matrix form arise from the Hirota-Miwa equation by a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations are derived for the discrete potential modified KdV equation and it is shown how these may be used to construct exact solutions.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
8
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(11 citation statements)
references
References 27 publications
0
8
0
3
Order By: Relevance
“…On the other hand, it is believed that discrete integrable systems are more fundamental and universal than continuous ones. Starting from the discrete Kadomtsev-Petviashvili (KP) equation, or the so-called Hirota-Miwa (HW) equation [31,32] , Shi et al have derived discrete KdV equation and discrete potential mKdV equation, as well as their Lax pairs and multi-soliton solutions [33,34] . The authors have done a series of work in finding integrable discretizations of soliton equations such as the short pulse equation [35,36] , (2+1)-dimensional Zakharov equation [37] , the Camassa-Holm equation [38,39] and the Degasperis-Proceli equaiton [40] .…”
Section: Introductionmentioning
confidence: 99%
“…On the other hand, it is believed that discrete integrable systems are more fundamental and universal than continuous ones. Starting from the discrete Kadomtsev-Petviashvili (KP) equation, or the so-called Hirota-Miwa (HW) equation [31,32] , Shi et al have derived discrete KdV equation and discrete potential mKdV equation, as well as their Lax pairs and multi-soliton solutions [33,34] . The authors have done a series of work in finding integrable discretizations of soliton equations such as the short pulse equation [35,36] , (2+1)-dimensional Zakharov equation [37] , the Camassa-Holm equation [38,39] and the Degasperis-Proceli equaiton [40] .…”
Section: Introductionmentioning
confidence: 99%
“…It is commonly known that the continuous KP hierarchy can be reduced to all those well-known two-dimensional soliton hierarchies associated with their linear equations [5]. In fact, the HM equation also plays a role as a master model in the discrete systems, since many two-dimensional discrete integrable equations such as the discrete Korteweg-de Vries (KdV) type, Boussinesq (BSQ) type, etc., can be obtained from the HM equation by taking reductions [6][7][8]. This means that many things can be inherited, such as Lax pair, Darboux transformations, exact solutions, etc., from the HM equation.…”
Section: Introductionmentioning
confidence: 99%
“…Отметим существование аналогичных результатов для солитонных решений некоторых дискретных уравнений типа КдФ (см. статьи [25]- [27]). В работе [25] на основе прямых вычислений были построены ПД для дискретного уравнения Шредингера (2.1).…”
unclassified
“…Однако преобразования Дарбу, полученные в [25], имеют несимметричный вид, и эти преобразования нельзя непосредственно связать со свойством трехмерной совместности (соответствующие формулы Крама фактически были получены для решения полудискретного уравнения КдФ). Использованный в работах [26], [27] метод вывода рпКдФ и рпмКдФ (а также солитонных решений) основан на редукции систем КП и соответствующих ПД. Однако в рассмотренных в [26], [27] выражениях для солитонных решений нужна дополнительная непрерывная переменная, поскольку уравнение рпКдФ получено как редукция полудискретной версии потенцированного уравнения КП (см.…”
unclassified
See 1 more Smart Citation