The lubrication approximation is applied to electro-osmotic flow through a thin parallel-plate channel under the combined effect of charge and hydrodynamic slippage modulation on the walls. The walls are periodically patterned for the charge and slip distributions, with a wavelength much longer than the channel height. It is shown that the phase of the wall patterns will play a significant role in determining the section-averaged velocity as well as the local convection pattern, quantitatively and qualitatively. The effect of the phase on the flow will be dramatically different, depending on whether the electric field is applied along or perpendicular to the varying direction of the patterns. The possibility of generating a net flow in a direction perpendicular to the applied field is demonstrated.