We propose to identify the displacement damage defects induced by proton and carbon irradiations in a com mercial off-the-shelf pinned photodiode (PPD) 8T-CMOS image sensors (CISs) dedicated to space application operating in global shutter mode. This paper aims to provide a better understanding of defects creation in a specific space image sensor. Therefore, it leads to comparable results to those we could find during the mission. The study focuses on bulk defects located in the PPD depleted region which represents the main dark current contribution in PPD CIS. Four sensors have been irradiated with carbon ions and protons at different energies and fl uencies. Using both the dark current spectroscopy and the random telegraph si gn al (RTS) analysis, we investigate defects behavior for different isochronal a,mealing temperatures. By combi1ùng these results, we make the connection between two complementary phenomena and bring out the prevalence of divacancies-based defects in terin of dark current contribution.