We investigate the prospects for detection of neutralino dark matter in the 19-parameter phenomenological MSSM (pMSSM). We explore very wide ranges of the pMSSM parameters but pay particular attention to the higgsino-like neutralino at the ∼ 1 TeV scale, which has been shown to be a well motivated solution in many constrained supersymmetric models, as well as to a wino-dominated solution with the mass in the range of 2-3 TeV. After summarising the present bounds on the parameter space from direct and indirect detection experiments, we focus on prospects for detection of the Cherenkov Telescope Array (CTA). To this end, we derive a realistic assessment of the sensitivity of CTA to photon fluxes from dark matter annihilation by means of a binned likelihood analysis for the Einasto and Navarro-Frenk-White halo profiles. We use the most up to date instrument response functions and background simulation model provided by the CTA Collaboration. We find that, with 500 hours of observation, under the Einasto profile CTA is bound to exclude at the 95% C.L. almost all of the ∼ 1 TeV higgsino region of the pMSSM, effectively closing the window for heavy supersymmetric dark matter in many realistic models. CTA will be able to probe the vast majority of cases corresponding to a spin-independent scattering cross section below the reach of 1-tonne underground detector searches for dark matter, in fact even well below the irreducible neutrino background for direct detection. On the other hand, many points lying beyond the sensitivity of CTA will be within the reach of 1-tonne detectors, and some within collider reach. Altogether, CTA will provide a highly sensitive way of searching for dark matter that will be partially overlapping and partially complementary with 1-tonne detector and collider searches, thus being instrumental to effectively explore the nearly full parameter space of the pMSSM.