Dark matter was first suspected in clusters of galaxies when these galaxies were found to move with too high a speed to be retained in the cluster by their gravitational influence on each other. Some current theories favor cold dark matter models where particles are created with low velocity dispersions and thus would become trapped in baryonic gravitational potentials. According to the standard Big-Bang model, dark matter is of nonbaryonic origin, otherwise the observed abundance of helium in the Universe would be violated. In this work, recent theoretical and observational developments are used to form a consistent picture of the events in the early Universe that gave rise to dark matter. According to the model that will be presented in this paper, supersymmetry plays a major role. In addition, the possibility that dark matter evolves in a spacetime manifold different from that of the observed Universe is discussed.