Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the U (1) B−L model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound M Z /g BL 7 TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus nextto-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find M Z /g BL > 8.7 TeV for g BL = 0.3. We conclude that the NLO+NLL corrections improve the dilepton bounds on the Z mass and that both dark matter candidates are only viable in the Z resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model.