“…If we now know the values Ψ l,m,n and φ l,m,n at a certain time step t n for all positions x l and y m , the explicit RK4 method allows us to calculate for every position the values Ψ l,m,n+1 and φ l,m,n+1 of the next time step by using the following algorithm [35]: p 1 l,m,n = f (φ l,m,n ) (A.10) p 2 l,m,n = g(Ψ l,m,n , φ l,m,n ) (A.11) q 1 l,m,n = f (φ l,m,n + p 2 l,m,n /2) (A.12) q 2 l,m,n = g(Ψ l,m,n + p 1 l,m,n /2, φ l,m,n + p 2 l,m,n /2) (A.13) r 1 l,m,n = f (φ l,m,n + q 2 l,m,n /2) (A.14) r 2 l,m,n = g(Ψ l,m,n + q 1 l,m,n /2, φ l,m,n + q 2 l,m,n /2) (A.15) s 1 l,m,n = f (φ l,m,n + r 2 l,m,n ) (A.16) s 2 l,m,n = g(Ψ l,m,n + r 1 l,m,n , φ l,m,n + r 2 l,m,n ) (A.17) Ψ l,m,n+1 = Ψ l,m,n + ∆t 6 (p 1 l,m,n + 2 q 1 l,m,n + 2 r 1 l,m,n + s 1 l,m,n ) (A.18) φ l,m,n+1 = φ l,m,n + ∆t 6 (p 2 l,m,n + 2 q 2 l,m,n + 2 r 2 l,m,n + s 2 l,m,n ) (A. 19) This scheme can be repeated until the solution has been evolved up to the desired point in time. In order to study explicitly the character of amplitude and phase modes, we introduce the fields P ± (r, t) = [δΨ(r, t) ± δΨ * (r, t)] /2 (A.4)…”