Recently, more and more research has focused on addressing bias in text classification models. However, existing research mainly focuses on the fairness of monolingual text classification models, and research on fairness for multilingual text classification is still very limited. In this paper, we focus on the task of multilingual text classification and propose a debiasing framework for multilingual text classification based on contrastive learning. Our proposed method does not rely on any external language resources and can be extended to any other languages. The model contains four modules: multilingual text representation module, language fusion module, text debiasing module, and text classification module. The multilingual text representation module uses a multilingual pre-trained language model to represent the text, the language fusion module makes the semantic spaces of different languages tend to be consistent through contrastive learning, and the text debiasing ©2000 Marina Meilȃ and Michael I. Jordan.