The cyclic deformation and fatigue behavior of the c-TiAl alloy TNB-V5 is evaluated under thermomechanical load for three different microstructures. For this purpose, strain-controlled thermomechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400°C to 800°C (673 K to 1073 K), and with two different strain ranges to set a fatigue-life relation. Cyclic deformation curves, stress-strain hysteresis loops, and fatigue lives of the tests are presented. The microstructures near-gamma (NG) and duplex (DP) show comparable fatigue lives under all test parameters. The microstructure fullylamellar (FL) offers longer fatigue lives at the same loading conditions. For a general life prediction, the damage parameter of Smith, Watson, and Topper, P SWT vs fatigue life, is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition (approximately 750°C). In the completely brittle material behavior regime the quality of the lifetime prediction is unacceptable. The damage parameter P HL by Haibach and Lehrke shows a comparable correlation to the fatigue life as P SWT . The results are discussed with microstructural investigations.