The recent advancement in wireless power transmission (WPT) has led to the development of wireless rechargeable sensor networks (WRSNs), since this technology provides a means to replenish sensor nodes wirelessly, offering a solution to the energy challenges faced by WSNs. Most of the recent previous work has focused on charging sensor nodes using wireless charging vehicles (WCVs) equipped with high-capacity batteries and WPT devices. In these schemes, a vehicle can move close to a sensor node and wirelessly charge it without physical contact. While these schemes can mitigate the energy problem to some extent, they overlook two primary challenges of applied WCVs: off-road navigation and vehicle speed limitations. To overcome these challenges, previous work proposed a new WRSN model equipped with one drone coupled with several pads deployed to charge the drone when it cannot reach the subsequent stop. This wireless charging pad deployment aims to deploy the minimum number of pads so that at least one feasible routing path from the base station can be established for the drone to reach every SN in a given WRSN. The major weakness of previous studies is that they only consider deploying a wireless charging pad at the locations of the wireless sensor nodes. Their schemes are limited and constrained because usually every point in the deployed area can be considered to deploy a pad. Moreover, the deployed pads suggested by these schemes may not be able to meet the connected requirements due to sparse environments. In this work, we introduce a new scheme that utilizes the Quad-Tree concept to address the wireless charging pad deployment problem and reduce the number of deployed pads at the same time. Extensive simulations were conducted to illustrate the merits of the proposed schemes by comparing them with different previous schemes on maps of varying sizes. In the case of large maps, the proposed schemes surpassed all previous works, indicating that our approach is more suitable for large-scale network environments.