Studies show that heavy machinery operators are exposed to risk factors of musculoskeletal diseases. However, there has yet to be a study investigating the grip analysis of heavy machinery control levers. This preliminary study aims to investigate the grip analysis of a system that emulates the push–pull operations, handle shapes, and resistance of wheel loader control lever systems. The system was designed, analysed, and optimised using Autodesk Inventor 2019 before fabrication and testing. It underwent usability testing for estimated and perceived grip force analysis (ergonomics analysis). The tests measured estimated force using a sensor glove, and perceived force using the Borg CR10 scale. The data were analysed using regression and paired t-tests. The findings suggested that pulling and high resistance factors required higher estimated force (339.50 N) and perceived force (5.625) than pushing and low resistance factors in manoeuvring the system (p < 0.05). The cylindrical handle required more estimated force (339.50 N) but less perceived force (4.5) than the spherical handle due to ergonomic design considerations (p < 0.05). Although there were inaccuracies in force measurement methods, the perceived method was still effective for data collection, since it is challenging to measure grip force in a real situation with heavy machinery. While this study was only a simulation, it provided researchers with ideas that may solve problems in the manipulation of heavy machinery control levers.