Data-Aided Maximum Likelihood Joint Angle and Delay Estimator Over Orthogonal Frequency Division Multiplex Single-Input Multiple-Output Channels Based on New Gray Wolf Optimization Embedding Importance Sampling
Maha Abdelkhalek,
Souheib Ben Amor,
Sofiène Affes
Abstract:In this paper, we propose a new data-aided (DA) joint angle and delay (JADE) maximum likelihood (ML) estimator. The latter consists of a substantially modified and, hence, significantly improved gray wolf optimization (GWO) technique by fully integrating and embedding within it the powerful importance sampling (IS) concept. This new approach, referred to hereafter as GWOEIS (for “GWO embedding IS”), guarantees global optimality, and offers higher resolution capabilities over orthogonal frequency division multi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.