2024
DOI: 10.1021/acs.jcim.4c01427
|View full text |Cite
|
Sign up to set email alerts
|

Data and Molecular Fingerprint-Driven Machine Learning Approaches to Halogen Bonding

Daniel P. Devore,
Kevin L. Shuford

Abstract: The ability to predict the strength of halogen bonds and properties of halogen bond (XB) donors has significant utility for medicinal chemistry and materials science. XBs are typically calculated through expensive ab initio methods. Thus, the development of tools and techniques for fast, accurate, and efficient property predictions has become increasingly more important. Herein, we employ three machine learning models to classify the XB donors and complexes by their principal halogen atom as well as predict th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 62 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?