Digital twins have emerged as a key technology for optimizing the performance of engineering products and systems. High-fidelity numerical simulations constitute the backbone of engineering design, providing an accurate insight into the performance of complex systems. However, largescale, dynamic, non-linear models require significant computational resources and are prohibitive for real-time digital twin applications. To this end, reduced order models (ROMs) are employed, to approximate the high-fidelity solutions while accurately capturing the dominant aspects of the physical behavior. The present work proposes a new machine learning (ML) platform for the development of ROMs, to handle large-scale numerical problems dealing with transient nonlinear partial differential equations. Our framework, mentioned as FastSVD-ML-ROM, utilizes (i) a singular value decomposition (SVD) update methodology, to compute a linear subspace of the multi-fidelity solutions during the simulation process, (ii) convolutional autoencoders for nonlinear dimensionality reduction, (iii) feed-forward neural networks to map the input parameters to the latent spaces, and (iv) long short-term memory networks to predict and forecast the dynamics of parametric solutions. The efficiency of the FastSVD-ML-ROM framework is demonstrated for a 2D linear convection-diffusion equation, the problem of fluid around a cylinder, and the 3D blood flow inside an arterial segment. The accuracy of the reconstructed results demonstrates the robustness and assesses the efficiency of the proposed approach.