In this paper, a global ionospheric data assimilation model is constructed based on the empirical internationalreference-ionosphere model and the Kalman filter. A sparse matrix method is used to militate the huge computation and storage problems. A series of observing system simulation experiments has been performed based on the existing global ground-based global navigation satellite system (GNSS) network, the planned Constellation Observing System for Meteorology, Ionosphere, and Climate #2/Formosa Satellite Mission #7 (COSMIC-2/FORMOSAT-7) orbits, and the real global position system and GLObal NAvigation Satellite System (GLONASS) orbits. Specifically, the COSMIC-2 will have six 24 • inclination satellites in 500-km altitude and six 72 • inclination satellites in 800-km altitude. The slant total electron content of ground-based GNSS, radio occultation and ocean reflection (OR) of 12 low-Earthorbit satellites, and cross-link between COSMIC-2 low and high inclination satellites are simulated by the NeQuick model. The ORs show great impacts in specifying the ionosphere except over the inland area. It complements the existing ground-based GNSS network, which mainly observes the ionosphere over the land area. The 24 • and 72 • satellites can complement each other to optimize the global ionospheric specification. The COSMIC-2 mission is expected to contribute significantly to the accurate ionospheric nowcast. Its potential ability in ionospheric short-term forecast is also discussed.