2023
DOI: 10.1177/00368504231212769
|View full text |Cite
|
Sign up to set email alerts
|

Data augmentation using generative models for track intrusion detection

Soohyung Lee,
Beomseong Kim,
Heesung Lee

Abstract: The objective of this work is to address the problem of detecting track intruders in railway systems using deep learning-based algorithms. Unauthorized entry onto railway tracks poses a significant risk of collisions between trains and humans. However, intrusion discrimination algorithms often suffer from a lack of learning data and data imbalance issues. To overcome these challenges, this research proposes an algorithm that combines generative models and classification networks. Generative models are utilized… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance