Data augmentation via warping transforms for modeling natural variability in the corneal endothelium enhances semi-supervised segmentation
Sergio Sanchez,
Noelia Vallez,
Gloria Bueno
et al.
Abstract:Image segmentation of the corneal endothelium with deep convolutional neural networks (CNN) is challenging due to the scarcity of expert-annotated data. This work proposes a data augmentation technique via warping to enhance the performance of semi-supervised training of CNNs for accurate segmentation. We use a unique augmentation process for images and masks involving keypoint extraction, Delaunay triangulation, local affine transformations, and mask refinement. This approach accurately captures the natural v… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.