Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Kolmogorov-Arnold Networks (KANs) emerged as a promising alternative for multilayer perceptrons in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different SOTA deep learning architectures currently used in genomics requires further research.
Kolmogorov-Arnold Networks (KANs) emerged as a promising alternative for multilayer perceptrons in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different SOTA deep learning architectures currently used in genomics requires further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.