2012
DOI: 10.1002/hyp.9233
|View full text |Cite
|
Sign up to set email alerts
|

Data‐based analysis of bivariate copula tail dependence for drought duration and severity

Abstract: In recent decades, copula functions have been applied in bivariate drought duration and severity frequency analysis. Among several potential copulas, Clayton has been mostly used in drought analysis. In this research, we studied the influence of the tail shape of various copula functions (i.e. Gumbel, Frank, Clayton and Gaussian) on drought bivariate frequency analysis. The appropriateness of Clayton copula for the characterization of drought characteristics is also investigated. Drought data are extracted fro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
51
0
1

Year Published

2014
2014
2018
2018

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 134 publications
(53 citation statements)
references
References 46 publications
1
51
0
1
Order By: Relevance
“…The choice of the adequate copula is in 403 agreement with those of similar studies e.g Lee et al (2012). 404…”
Section: Identification Of Marginal Distributions 358supporting
confidence: 74%
“…The choice of the adequate copula is in 403 agreement with those of similar studies e.g Lee et al (2012). 404…”
Section: Identification Of Marginal Distributions 358supporting
confidence: 74%
“…2). As the choice of copula can be very different from one climate region to another (Khedun et al, 2013) the present study focused on the Frank and Gumbel copulas (Appendix B), as they perform best when analysing the bivariate drought dependence structure of drought variables such as severity and duration Reddy and Ganguli, 2012;Shiau, 2006;Lee et al, 2013;Wong et al, 2010;Zhang et al, 2011 …”
Section: Step 3: Estimate Copula Parametermentioning
confidence: 99%
“…Copulas are often a good alternative to the most commonly used univariate frequency analyses. Among other applications, copula functions have been used for modelling droughts (Kao and Govindaraju, 2010;Wong et al, 2010;Liu et al, 2011;Reddy and Ganguli, 2012a;Lee et al, 2013;Ma et al, 2013;Wong et al, 2013), rainfall analysis (Singh and Zhang, 2007;Zhang and Singh, 2007a;Gargouri-Ellouze and Chebchoub, 2008;Ghosh, 2010;Vandenberghe et al, 2010;Balistrocchi and Bacchi, 2011;Ariff et al, 2012), assessing the risk of dam overtopping (De Michele et al, 2005), hyetograph analysis (Grimaldi and Serinaldi, 2006b), flood coincidence risk analysis (Chen et al, 2012), geostatistical models (Bardossy, 2006) and, indeed, flood frequency analysis (Grimaldi and Serinaldi, 2006a;Zhang and Singh, 2006;Renard and Lang, 2007;Zhang and Singh, 2007b;Karmakar and Simonovic, 2009). The first paper on copulas in hydrology was written by De Michele and Salvadori (2003), and in the next few years, several other papers were also published, e.g.…”
Section: Introductionmentioning
confidence: 99%