2014
DOI: 10.17535/crorr.2014.0025
|View full text |Cite
|
Sign up to set email alerts
|

Data clustering for circle detection

Abstract: Abstract. This paper considers a multiple-circle detection problem on the basis of given data. The problem is solved by application of the center-based clustering method. For the purpose of searching for a locally optimal partition modeled on the well-known k-means algorithm, the k-closest circles algorithm has been constructed. The method has been illustrated by several numerical examples.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 19 publications
0
2
0
2
Order By: Relevance
“…Metode raspodjele ukupnog broja zastupničkih mjesta S po izbornim jedinicama I 1 , …, I k mogu se općenito podijeliti u dvije skupine (v. Balinski & Joung (1975); Cortona et al (1999); Gallagher (1992); Marošević, Sabo & Taler (2013)):…”
Section: Metode Raspodjele Broja Zastupničkih Mjestaunclassified
See 1 more Smart Citation
“…Metode raspodjele ukupnog broja zastupničkih mjesta S po izbornim jedinicama I 1 , …, I k mogu se općenito podijeliti u dvije skupine (v. Balinski & Joung (1975); Cortona et al (1999); Gallagher (1992); Marošević, Sabo & Taler (2013)):…”
Section: Metode Raspodjele Broja Zastupničkih Mjestaunclassified
“…U nastavku navodimo poznate indekse 3 kojima je moguće mjeriti kvalitetu raspodjele broja zastupničkih mjesta po izbornim jedinicama koje na neki način mjere ujednačenost težine biračkog glasa (v. Marošević, Sabo & Taler, 2013). Pritom će manja vrijednost indeksa značiti ujednačenije težine biračkih glasova.…”
Section: Mjere Ujednačenosti Težina Biračkih Glasovaunclassified
“…Clustering is a widely used exploratory data analysis tool that has been successfully applied to data analysis, image processing, pattern recognition, engineering [2,4,6,7,8,15,17,18], and many other fields. In this paper, we focus on the detection of clusters in a noisy environment based on the well-known EM algorithm [2,3,9,11,18].…”
Section: Introductionmentioning
confidence: 99%
“…where D(a, E) is the distance from point a to ellipse E (an analogous definition for the circle-center is given in [13,18]). If the Mahalanobis distance-like function is used (see, e.g., [2,3,21]…”
Section: Introductionmentioning
confidence: 99%